SCIENCE - CHEMISTRY

- CH.1 The student will investigate and understand that experiments in which variables are measured, analyzed, and evaluated produce observations and verifiable data. Key concepts include
 - a) designated laboratory techniques;
 - b) safe use of chemicals and equipment:
 - c) proper response to emergency situations;
 - d) manipulation of multiple variables, using repeated trials;
 - e) accurate recording, organization, and analysis of data through repeated trials;
 - f) mathematical and procedural error analysis;
 - g) mathematical manipulations including SI units, scientific notation, linear equations, graphing, ratio and proportion, significant digits, and dimensional analysis;
 - h) use of appropriate technology including computers, graphing calculators, and probeware, for gathering data, communicating results, and using simulations to model concepts;
 - i) construction and defense of a scientific viewpoint; and
 - j) the use of current applications to reinforce chemistry concepts.
- CH.2 The student will investigate and understand that the placement of elements on the periodic table is a function of their atomic structure.

 The periodic table is a tool used for the investigations of
 - a) average atomic mass, mass number, and atomic number;
 - b) isotopes, half lives, and radioactive decay;
 - c) mass and charge characteristics of subatomic particles;
 - d) families or groups;
 - e) periods;
 - f) trends including atomic radii, electronegativity, shielding effect, and ionization energy;
 - g) electron configurations, valence electrons, and oxidation numbers;
 - h) chemical and physical properties; and
 - i) historical and quantum models.

- CH.3 The student will investigate and understand how conservation of energy and matter is expressed in chemical formulas and balanced equations. Key concepts include
 - a) nomenclature;
 - b) balancing chemical equations;
 - c) writing chemical formulas;
 - d) bonding types;
 - e) reaction types; and
 - f) reaction rates, kinetics, and equilibrium.
- CH.4 The student will investigate and understand that chemical quantities are based on molar relationships. Key concepts include
 - a) Avogadro's principle and molar volume;
 - b) stoichiometric relationships;
 - c) solution concentrations; and
 - d) acid/base theory; strong electrolytes, weak electrolytes, and nonelectrolytes; dissociation and ionization; pH and pOH; and the titration process.
- CH.5 The student will investigate and understand that the phases of matter are explained by kinetic theory and forces of attraction between particles. Key concepts include
 - a) pressure, temperature, and volume;
 - b) partial pressure and gas laws;
 - c) vapor pressure;
 - d) phase changes;
 - e) molar heats of fusion and vaporization;
 - f) specific heat capacity; and
 - g) colligative properties.
- CH.6 The student will investigate and understand how basic chemical properties relate to organic chemistry and biochemistry. Key concepts include
 - a) unique properties of carbon that allow multi-carbon compounds; and
 - b) uses in pharmaceuticals and genetics, petrochemicals, plastics, and food.